Semantic Theory Lecture 2: First-Order predicate Logic

Manfred Pinkal FR 4.7 Computational Linguistics and Phonetics

Summer 2014

Predicate Logic – Vocabulary

- Non-logical expressions:
 - Individual constants: CON
 - n-place relation constants: PREDⁿ, for all $n \ge 0$
- Infinite set of individual variables: VAR
- **Logical connectives:** \neg , \land , \lor , \rightarrow , \leftrightarrow
- Quantifiers: ∀, ∃
- Identity relation: =
- Brackets: (,)

Predicate Logic – Syntax

- **Terms:** TERM = VAR \cup CON
- Atomic formulas:
 - **R**(t₁,..., t_n) for $R \in PRED^n$ and t₁, ..., t_n $\in TERM$
 - $t_1 = t_2$ for $t_1, t_2 \in \mathsf{TERM}$
- Well-formed formulas: the smallest set WFF such that
 - all atomic formulas are WFF
 - if ϕ and ψ are WFF, then $\neg \phi$, $(\phi \land \psi)$, $(\phi \lor \psi)$, $(\phi \rightarrow \psi)$, $(\phi \leftrightarrow \psi)$ are WFF
 - if $x \in VAR$, and φ is a WFF, then $\forall x \varphi$ and $\exists x \varphi$ are WFF

Free and Bound Variables

- If $\forall x \phi$ ($\exists x \phi$) is a subformula of a formula ψ , then ϕ is the **scope** of this occurrence of $\forall x$ ($\exists x$) in ψ .
- An occurrence of variable x in a formula φ is **free in** φ if this occurrence of x does not fall within the scope of a quantifier $\forall x$ or $\exists x$ in φ .
- If $\forall x \psi$ ($\exists x \psi$) is a subformula of φ and x is free in ψ , then this occurrence of x is **bound by** this occurrence of the quantifier $\forall x$ ($\exists x$).
- A closed formula is a formula without free variables.

Predicate Logic – Semantics

- Expressions of Predicate Logic are interpreted relative to model structures and variable assignments.
- Model structures are our "mathematical picture" of the world: They provide interpretations for non-logical symbols (predicate symbols, individual constants).
- Variable assignments provide interpretations for variables.

Model structures

- **Model structure:** $M = \langle U_M, V_M \rangle$
 - U_M is non-empty set the "universe"
 - V_M is an interpretation function assigning individuals (∈U_M) to individual constants and n-ary relations over U_M to nplace predicate symbols:
 - $V_M(P) \in \{0,1\}$ if P is an 0-place predicate symbol
 - $V_M(P) \subseteq U_M^n$ if P is an n-place predicate symbol
 - VM(c) \in UM if c is an individual constant
- **Assignment function** for variables g: VAR \rightarrow U_M

Model Structure, Example

 $M = \langle U_M, V_M \rangle$ $U_{M} = \{ 1, 2, 3, 4, 5, 6 \}$ $V_M(\text{bill}) = 1$ $V_M(mary) = 5$ $V_{M}(student) = \{ 1, 2, 4, 5 \}$ $V_{M}(teacher) = \{ 3, 6 \}$ $V_{M}(work) = \{ 1, 2, 4, 5, 6 \}$ $V_{M}(like) = \{ (1, 6) \}$

Interpretation of Terms

- Interpretation of terms with respect to a model structure M and a variable assignment g:
 - $$\label{eq:main_series} \begin{split} \llbracket \alpha \rrbracket^{M,g} = & V_M(\alpha) & \text{ if } \alpha \text{ is an individual constant} \\ & g(\alpha) & \text{ if } \alpha \text{ is a variable} \end{split}$$

Interpretation of Formulas

- Interpretation of formulas with respect to a model structure M and variable assignment g:

$$[t_1 = t_2]^{M,g} = 1 \text{ iff } [t_1]^{M,g} = [t_2]^{M,g}$$

$$\blacksquare \qquad \llbracket \neg \phi \rrbracket^{M,g} = 1 \text{ iff } \llbracket \phi \rrbracket^{M,g} = 0$$

- $\quad [\![\phi \land \psi]\!]^{\mathsf{M},\mathsf{g}} = 1 \text{ iff } [\![\phi]\!]^{\mathsf{M},\mathsf{g}} = 1 \text{ and } [\![\psi]\!]^{\mathsf{M},\mathsf{g}} = 1$
- $\label{eq:phi_matrix} \blacksquare \ensuremath{\left[\phi \right]}^{M,g} = 1 \text{ iff } \ensuremath{\left[\phi \right]}^{M,g} = 0 \text{ or } \ensuremath{\left[\psi \right]}^{M,g} = 1$
- $\blacksquare \quad \llbracket \phi \leftrightarrow \psi \rrbracket^{M,g} = 1 \text{ iff } \llbracket \phi \rrbracket^{M,g} = \llbracket \psi \rrbracket^{M,g}$
- $\ \, [\exists x \phi]^{M,g} = 1 \text{ iff there is a } d \in U_M \text{ such that } [\phi]^{M,g[x/d]} = 1$
- $\blacksquare \quad \llbracket \forall x \phi \rrbracket^{M,g} = 1 \text{ iff for all } d \in U_M, \llbracket \phi \rrbracket^{M,g[x/d]} = 1$

Variable assignments

- We write g[x/d] for the assignment that assigns d to x and assigns the same values as g to all other variables.
 - g[x/d](y) = d, if x = y

■
$$g[x/d](y) = g(y)$$
, if $x \neq y$

	X	У	z	u	
g	а	b	С	d	
g[x/a]	а	b	С	d	
g[y/a]	а	а	С	d	
g[y/g(z)]	а	С	С	d	
g[y/a][u/a]	а	а	С	а	
g[y/a][y/b]	а	b	С	d	

Truth, Validity, Entailment

- A formula φ is true in a model structure M iff
 [[φ]^{M,g} = 1 for every variable assignment g.
- A formula φ is valid (⊨ φ) iff φ is true in all model structures.
- A formula φ is satisfiable iff there is at least one model structure M such that φ is true in M.
- A set of formulas Γ is (simultaneously) satisfiable iff there is a model structure M such that every formula in Γ is true in M ("M satisfies Γ," or "M is a model of Γ").
- **Γ entails a formula φ (Γ ⊨ φ)** iff φ is true in every model structure that satisfies Γ.

Logical Equivalence

Formula φ is logically equivalent to formula ψ ($\varphi \Leftrightarrow \psi$), iff

 $\llbracket \phi \rrbracket^{M,g} = \llbracket \psi \rrbracket^{M,g}$ for all model structures M and variable assignments g.

- For all closed formulas φ and ψ, the following assertions are equivalent:
 - 1. $\phi \models \psi$ and $\psi \models \phi$ (mutual entailment)
 - φ⇔ψ (logical equivalence)

3. $\models \phi \leftrightarrow \psi$ (validity of "material equivalence")

Problem: Why does this hold for closed formulas only? What is the situation in the case of formulas containing free variables (like "Fx" and "Fy")?

The Principle of Extensionality

Theorem: Let φ be a subformula of χ , $[\psi/\phi]\chi$ be the result of replacing φ in χ with ψ :

If $\phi \Leftrightarrow \psi$, then $\chi \Leftrightarrow [\psi/\phi]\chi$

- The theorem states the theoretically important Principle of Extensionality.
- An important practical consequence of the theorem is that it justifies equivalence transformations of logical formulas by substituting sub-expressions with logically equivalent ones.

Some Useful Logical Theorems Involving Connectives

- 1) $\neg \neg \phi \Leftrightarrow \phi$ Double negation
- 2) $\varphi \Lambda \psi \Leftrightarrow \psi \Lambda \varphi$ Commutativity of Λ , ν
- 3) $\phi v \psi \Leftrightarrow \psi v \phi$
- 4) $\varphi \wedge (\psi \vee \chi) \Leftrightarrow (\varphi \wedge \psi) \vee (\varphi \wedge \chi)$ Distributivity of \wedge and \vee
- 5) $\varphi v(\psi \wedge \chi) \Leftrightarrow (\varphi v \psi) \wedge (\varphi v \chi)$
- 6) $\neg(\phi \land \psi) \Leftrightarrow \neg \phi \lor \neg \psi$ de Morgan's Law
- 7) ¬(φ∨ψ) ⇔ ¬φ∧¬ψ
- 8) $\phi \rightarrow \neg \psi \Leftrightarrow \psi \rightarrow \neg \phi$ Law of Contraposition
- 9) $\phi \rightarrow \psi \Leftrightarrow \neg \phi v \psi \rightarrow and v$
- $10) \neg (\phi \rightarrow \psi) \Leftrightarrow \phi \land \neg \psi \qquad \rightarrow \text{ and } \land$

Some Useful Logical Theorems Involving Quantifiers

- 11) $\neg \forall x \phi \Leftrightarrow \exists x \neg \phi$ Quantifier negation
- 12) $\neg \exists x \phi \Leftrightarrow \forall x \neg \phi$
- 13) $\forall x(\phi \land \Psi) \Leftrightarrow \forall x\phi \land \forall x\Psi$ Quantifier distribution
- 14) $\exists x(\phi \lor \Psi) \Leftrightarrow \exists x\phi \lor \exists x\Psi$
- 15) $\forall x \forall y \phi \Leftrightarrow \forall y \forall x \phi$ Quantifier Swap
- 16) $\exists x \exists y \phi \Leftrightarrow \exists y \exists x \phi$
- 17) $\exists x \forall y \phi \Rightarrow \forall y \exists x \phi$... but not vice versa !

Provided that y does not occur free in φ , the following holds:

- 18) $\exists x \phi \Leftrightarrow \exists y \phi[y/x]$
- 19) $\forall x \phi \Leftrightarrow \exists y \phi[y/x]$, where $\phi[y/x]$ is the result of replacing all free occurrences of x (i.e.: all occurrences of x bound by the quantifier) with y.

Some More Theorems: Quantifier Shift

The following equivalences are valid theorems of FOL, provided that x does not occur free in φ :

24) $\phi \rightarrow \forall x \Psi \Leftrightarrow \forall x (\phi \rightarrow \Psi)$ 25) $\phi \rightarrow \exists x \Psi \Leftrightarrow \exists x (\phi \rightarrow \Psi)$ 26) $\exists x \Psi \rightarrow \phi \Leftrightarrow \forall x (\Psi \rightarrow \phi)$ 27) $\forall x \Psi \rightarrow \phi \Leftrightarrow \exists x (\Psi \rightarrow \phi)$

Equivalence Transformations: An Example

- (1) $\neg \exists x \forall y (Py \rightarrow Rxy)$ ("Nobody masters every problem")
- (2) $\forall x \exists y (Py \land \neg Rxy)$ ("Everybody fails to master some problem")

We show the equivalence of (1) and (2) as follows:

$$\neg \exists x \forall y (Py \rightarrow Rxy) \Leftrightarrow \forall x \neg \forall y (Py \rightarrow Rxy) \qquad (\neg \exists x \phi \Leftrightarrow \forall x \neg \phi)$$
$$\forall x \underline{\neg \forall y (Py \rightarrow Rxy)} \Leftrightarrow \forall x \underline{\exists y \neg (Py \rightarrow Rxy)} \qquad (\neg \exists x \phi \Leftrightarrow \forall x \neg \phi)$$
$$\forall x \exists y \underline{\neg (Py \rightarrow Rxy)} \Leftrightarrow \forall x \exists y (\underline{Py \land \neg Rxy}) \qquad (\neg (\phi \rightarrow \psi) \Leftrightarrow \phi \land \neg \psi)$$