Semantic Theory

Lecture 2: First-Order predicate Logic

Manfred Pinkal
FR 4.7 Computational Linguistics and Phonetics

Summer 2014

Predicate Logic — Vocabulary

m Non-logical expressions:
= Individual constants: CON

= Nn-place relation constants: PRED", foralln =0
m Infinite set of individual variables: VAR
m Logical connectives: —, A, VvV, —, ~
m Quantifiers: Vv, 3
m Identity relation: =

m Brackets: (,)

Predicate Logic — Syntax

m Terms: TERM = VAR u CON

m Atomic formulas:
m R(ty,..., tn) forR € PRED" and ti, ..., thn € TERM
m =1t for t1, t, € TERM

s Well-formed formulas: the smallest set WFF such that
m all atomic formulas are WFF

= if@ and yare WFF, then =g, (¢ A @), (¢ Vv @), (¢ — w),
(p — y)are WFF

m Ifx € VAR, and ¢ is a WFF, then Vx¢ and dx¢ are WFF

Free and Bound Variables

m If Vxo@ (Ix@) is a subformula of a formula y, then ¢ is the
scope of this occurrence of Vx (3x) in y.

m An occurrence of variable x in a formula ¢ is free in @ if
this occurrence of x does not fall within the scope of a
quantifier Vx or Ax in .

m T VXxy (Ixy) is a subformula of ¢ and x is free in y, then
this occurrence of x is bound by this occurrence of the
quantifier Vx (3x).

m A closed formula is a formula without free variables.

Predicate Logic — Semantics

m EXxpressions of Predicate Logic are interpreted relative to
model structures and variable assignments.

m Model structures are our “mathematical picture” of the
world: They provide interpretations for non-logical
symbols (predicate symbols, individual constants).

m Variable assignments provide interpretations for
variables.

Model structures

» Model structure: M = (Um, Vm)
= Uwmis non-empty set - the “universe”

= Vwm is an interpretation function assigning individuals (€Uw)
to individual constants and n-ary relations over Um to n-
place predicate symbols:

= Vm(P) € {0,1} if P is an O-place predicate symbol
= Vm(P) € Uw" if P is an n-place predicate symbol

m Vm(c) € Um if cis an individual constant

m Assignment function for variables g: VAR - Uwm

Model Structure, Example

bill M = (Uwm, Vm)
| student Uv ={1,2 3 45, 6)
teacher Vu(bill) = 1
Vm(mary) =5
Vm(student) = {1, 2, 4, 5}
Vm(teacher) = { 3,6 }
Vm(work) = {1, 2,4,5, 6}
Vm(like) = { (1, 6) }

Interpretation of Terms

m Interpretation of terms with respect to a model
structure M and a variable assignment g:

[aM9 = Vm(a) if a is an individual constant
g(a) if o is a variable

Interpretation of Formulas

m Interpretation of formulas with respect to a model
structure M and variable assignment g:

[[R(tl, . tn)]]M’g — 1|ff (ﬂ:tl]]M’g, “any [[tn]]M’g) & VM(R)

[t =t]M9=1

[—eIMe =1
[o A yIMe =1
[v ylo=1
[¢ —yl"9 =1
[¢ — yI"o =1

[IxeIM9 =1

[VxeIM9 =1

Iff
Iff
Iff
iff
iff
iff
iff
Iff

[t1]M9 = [t2]

[]™9 =0

[e1™9 =1 and [y]"9 =1

[e]™9 =1 or [yI"9 =1

[]™9 = 0 or [yI"9 =1

[I™9 = [y]™o

there is a d € Uwm such that [e™9lxdl = 1
for all d € Uwm, [@IM9ldl = 1

Variable assignments

m We write g[x/d] for the assignment that assigns d to x
and assigns the same values as g to all other variables.

m g[x/d](y)=d,ifx=y
s 9[x/dl(y) =g(y), ifx =y

X y Z u
g a b C d

glx/a a b C d
gly/a] a a C d
aly/g(z)] a C C d
gly/allu/a] a a C a
aly/ally/b] a b C d

10

Truth, Validity, Entailment

m A formula ¢ is true in a model structure M iff
[eIM9 = 1 for every variable assignment g.

m A formula ¢ is valid (F ¢) iff ¢ is true in all model
structures.

m A formula ¢ is satisfiable iff there is at least one model
structure M such that ¢ is true in M.

m A set of formulas I' is (simultaneously) satisfiable iff
there is a model structure M such that every formula in ' is
true in M (“M satisfies I',” or “M is a model of I'").

m [entails a formula ¢ (I' = @) iff ¢ is true in every model
structure that satisfies I'.

11

Logical Equivalence

= Formula ¢ is logically equivalent to formula g (@<w), iff

[eIM9 = [pIM9 for all model structures M and variable
assignments qg.

m For all closed formulas ¢ and y, the following assertions are
equivalent:

1. @ F g and g F @ (mutual entailment)
2. @y (logical equivalence)
3. F @ - g (validity of “material equivalence”)

m Problem: Why does this hold for closed formulas only? What is the
situation in the case of formulas containing free variables (like
MFX" and MFy")?

12

The Principle of Extensionality

m Theorem: Let ¢ be a subformula of ¥, [w/@lx be the result
of replacing ¢ in x with y:

If ¢ @ ¢y, then ¥ « [w/@l)

m The theorem states the theoretically important
Principle of Extensionality.

m An important practical consequence of the theorem is
that it justifies equivalence transformations of logical
formulas by substituting sub-expressions with logically
equivalent ones.

13

1)
2)
3)
4)
5)
6)
7)
8)
9)

Some Useful Logical Theorems

Involving Connectives

Qe P Double negation

OAY & YAQ Commutativity of A, v
oVy < Yyvao

OA(WVY) @ (pAY)V(pAY) Distributivity of A and v

PV(PAy) e (pvy)a(evy)

—(QAY) & VY de Morgan’s Law
—(QVY) & oAy

-y -0 Law of Contraposition
¢—-yYye0Vy —and v

10)=(p - y) © or—y — and A

14

Some Useful Logical Theorems

Involving Quantifiers

11) =VXxe & dx—o Quantifier negation
12)=3xp < VX—0

13)Vx(p A W) & Vxp A VXV Quantifier distribution
14)Ax(p v V) & dxe v IxV

15)VxVyp & VyVxo Quantifier Swap
16)dx3ye < JyIxe

17)3dIxVye = Vyadxe ... but not vice versa !

Provided that y does not occur free in ¢, the following holds:
18) Ixe < Jyoly/Xx]

19)Vxo < Ayoly/x], where ¢[y/x] is the result of replacing all free
occurrences of x (i.e.: all occurrences of x bound by the quantifier)

with vy.
15

Some More Theorems:

Quantifier Shift

The following equivalences are valid theorems of FOL, provided that
x does not occur free in ¢:

20)p A VXV & Vx(p A V)
21)p A XV & IAx(p A V)
22)p vV VXV & Vx(p v V)
23)¢ v IxV & IAx(p v V)

24)p — VXV & Vx(p — V)
25)p — IXV o Ix(p — V)
26)AxXV — ¢ & VX(V — o)
27)VxV — @ & Ix(V — @)

16

Equivalence Transformations:

An Example

(1) —3IAXVy(Py — Rxy) (“Nobody masters every problem”)
(2) Vx3ay(Py A =Rxy) (“Everybody fails to master some problem?”)

We show the equivalence of (1) and (2) as follows:
—IAXVy(Py — Rxy) & Vx—=Vy(Py — Rxy) (—3dAXp & VXx—0)
VXx=Vy(Py — Rxy) & Vx3dy—(Py — Rxy) (—3dAXp & VX—0@)

Vx3y—=(Py — Rxy) & Vx3y(Py A —=Rxy) (—(p—y) e on—y)

17

