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■  Non-logical expressions: 
■  Individual constants: CON 

■  n-place relation constants: PREDn, for all n ≥ 0 

■  Infinite set of individual variables: VAR 

■  Logical connectives: ¬, ∧, ∨, →, ↔ 

■  Quantifiers: ∀, ∃ 

■  Identity relation: = 

■  Brackets: (, ) 

Predicate Logic – Vocabulary 
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■  Terms: TERM = VAR ∪ CON 

■  Atomic formulas: 
■  R(t1,…, tn)  for R ∈ PREDn and t1, …, tn ∈ TERM 

■  t1 = t2  for t1, t2 ∈ TERM  

■  Well-formed formulas: the smallest set WFF such that 
■  all atomic formulas are WFF 

■  if φ and ψ are WFF, then ¬φ, (φ ∧ ψ), (φ ∨ ψ), (φ → ψ),  
(φ ↔ ψ) are WFF 

■  if x ∈ VAR, and φ is a WFF, then ∀xφ and ∃xφ are WFF 

Predicate Logic – Syntax 
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Free and Bound Variables 

■  If ∀xφ (∃xφ) is a subformula of a formula ψ, then φ is the 
scope of this occurrence of ∀x (∃x) in ψ. 

■  An occurrence of variable x in a formula φ is free in φ if 
this occurrence of x does not fall within the scope of a 
quantifier ∀x or ∃x in φ. 

■  If ∀xψ (∃xψ) is a subformula of φ and x is free in ψ, then 
this occurrence of x is bound by this occurrence of the 
quantifier ∀x (∃x). 

■  A closed formula is a formula without free variables. 
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■  Expressions of Predicate Logic are interpreted relative to 
model structures and variable assignments. 

■  Model structures are our “mathematical picture” of the 
world: They provide interpretations for non-logical 
symbols (predicate symbols, individual constants). 

■  Variable assignments provide interpretations for 
variables. 

Predicate Logic – Semantics 
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■  Model structure: M = ⟨UM, VM⟩ 
■  UM is non-empty set – the “universe” 

■  VM is an interpretation function assigning individuals (∈UM) 
to individual constants and n-ary relations over UM to n-
place predicate symbols: 

■  VM(P) ∈ {0,1}  if P is an 0-place predicate symbol 

■  VM(P) ⊆ UMn  if P is an n-place predicate symbol 

■  VM(c) ∈ UM   if c is an individual constant 

■  Assignment function for variables g: VAR ⇾ UM 

Model structures 



Model Structure, Example 
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 M  = ⟨UM, VM⟩ 

 UM  = { 1, 2, 3, 4, 5, 6} 

 VM(bill) = 1 

 VM(mary) = 5 

 VM(student) = { 1, 2, 4, 5} 

 VM(teacher) = { 3, 6 } 

 VM(work) = { 1, 2, 4, 5, 6} 

 VM(like) = { ⟨1, 6⟩ } 

   1     2 

   4 

   5 

   3 

   6 

student 

teacher 

work 

bill 

mary 
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Interpretation of Terms 

■  Interpretation of terms with respect to a model 
structure M and a variable assignment g: 
⟦α⟧M,g =    VM(α)  if α is an individual constant 

  g(α)  if α is a variable 



9 

Interpretation of Formulas 

■  Interpretation of formulas with respect to a model 
structure M and variable assignment g: 
■  ⟦R(t1, ..., tn)⟧M,g = 1 iff  ⟨⟦t1⟧M,g, …, ⟦tn⟧M,g⟩ ∈ VM(R) 
■  ⟦t1 = t2⟧M,g = 1 iff  ⟦t1⟧M,g = ⟦t2⟧M,g 
■   ⟦¬φ⟧M,g = 1 iff  ⟦φ⟧M,g = 0 
■   ⟦φ ∧ ψ⟧M,g = 1 iff  ⟦φ⟧M,g = 1 and ⟦ψ⟧M,g = 1 
■   ⟦φ ∨ ψ⟧M,g = 1 iff  ⟦φ⟧M,g = 1 or ⟦ψ⟧M,g = 1 
■   ⟦φ → ψ⟧M,g = 1 iff  ⟦φ⟧M,g = 0 or ⟦ψ⟧M,g = 1  
■   ⟦φ ↔ ψ⟧M,g = 1 iff  ⟦φ⟧M,g = ⟦ψ⟧M,g  
■   ⟦∃xφ⟧M,g = 1 iff  there is a d ∈ UM such that ⟦φ⟧M,g[x/d] = 1  
■   ⟦∀xφ⟧M,g = 1 iff  for all d ∈ UM, ⟦φ⟧M,g[x/d] = 1  
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■  We write g[x/d] for the assignment that assigns d to x 
and assigns the same values as g to all other variables. 
■  g[x/d](y) = d, if x = y 

■  g[x/d](y) = g(y), if x ≠ y 

Variable assignments 

x y z u … 
g a b c d … 

g[x/a] a b c d … 
g[y/a] a a c d … 

g[y/g(z)] a c c d … 
g[y/a][u/a] a a c a … 
g[y/a][y/b] a b c d … 
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Truth, Validity, Entailment 
■  A formula φ is true in a model structure M iff 

⟦φ⟧M,g = 1 for every variable assignment g. 

■  A formula φ is valid (⊨ φ) iff φ is true in all model 
structures. 

■  A formula φ is satisfiable iff there is at least one model 
structure M such that φ is true in M. 

■  A set of formulas Γ is (simultaneously) satisfiable iff 
there is a model structure M such that every formula in Γ is 
true in M (“M satisfies Γ,” or “M is a model of Γ”). 

■  Γ entails a formula φ (Γ ⊨ φ) iff φ is true in every model 
structure that satisfies Γ. 
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Logical Equivalence 
■  Formula φ is logically equivalent to formula ψ (φ⇔ψ), iff 

 ⟦φ⟧M,g = ⟦ψ⟧M,g  for all model structures M and variable 
assignments g. 

■  For all closed formulas φ and ψ, the following assertions are 
equivalent: 

1.  φ ⊨ ψ and ψ ⊨ φ (mutual entailment) 

2.  φ⇔ψ (logical equivalence) 

3.  ⊨ φ ↔ ψ (validity of “material equivalence”) 

■  Problem: Why does this hold for closed formulas only? What is the 
situation in the case of formulas containing free variables (like 
“Fx” and “Fy”)?      



■  Theorem: Let φ be a subformula of χ, [ψ/φ]χ be the result 
of replacing φ in χ with ψ: 

  If  φ ⇔ ψ , then χ ⇔ [ψ/φ]χ 

■  The theorem states the theoretically important 
Principle of Extensionality. 

■  An important practical consequence of the theorem is 
that it justifies equivalence transformations of logical 
formulas by substituting sub-expressions with logically 
equivalent ones. 
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The Principle of Extensionality 



Some Useful Logical Theorems 
Involving Connectives 

1)  ¬¬φ ⇔ φ    Double negation 
2)  φ∧ψ ⇔  ψ∧φ    Commutativity of ∧, ∨ 
3)  φ∨ψ ⇔  ψ∨φ 
4)  φ∧(ψ∨χ) ⇔ (φ∧ψ)∨(φ∧χ)  Distributivity of ∧ and ∨ 
5)  φ∨(ψ∧χ) ⇔ (φ∨ψ)∧(φ∨χ) 
6)  ¬(φ∧ψ) ⇔ ¬φ∨¬ψ   de Morgan’s Law 
7)  ¬(φ∨ψ) ⇔ ¬φ∧¬ψ 
8)  φ →¬ψ ⇔ ψ →¬φ    Law of Contraposition 
9)  φ → ψ ⇔ ¬φ∨ψ    → and ∨ 
10) ¬(φ → ψ) ⇔ φ∧¬ψ  → and ∧ 
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Some Useful Logical Theorems 
Involving Quantifiers 
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11) ¬∀xφ ⇔ ∃x¬φ      Quantifier negation 
12) ¬∃xφ ⇔ ∀x¬φ  
13) ∀x(φ ∧ Ψ) ⇔ ∀xφ ∧ ∀xΨ  Quantifier distribution 
14) ∃x(φ ∨ Ψ) ⇔ ∃xφ ∨ ∃xΨ 
15) ∀x∀yφ ⇔ ∀y∀xφ    Quantifier Swap 
16) ∃x∃yφ ⇔ ∃y∃xφ 
17) ∃x∀yφ ⇒ ∀y∃xφ    ... but not vice versa ! 

Provided that y does not occur free in φ, the following holds: 
18) ∃xφ ⇔ ∃yφ[y/x] 
19) ∀xφ ⇔ ∃yφ[y/x], where φ[y/x] is the result of replacing all free 

occurrences of x (i.e.: all occurrences of x bound by the quantifier) 
with y.  



Some More Theorems: 
Quantifier Shift 
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The following equivalences are valid theorems of FOL, provided that 
x does not occur free in φ: 

20) φ ∧ ∀xΨ ⇔ ∀x(φ ∧ Ψ)  
21) φ ∧ ∃xΨ ⇔ ∃x(φ ∧ Ψ) 
22) φ ∨ ∀xΨ ⇔ ∀x(φ ∨ Ψ)  
23) φ ∨ ∃xΨ ⇔ ∃x(φ ∨ Ψ) 

24) φ → ∀xΨ ⇔ ∀x(φ → Ψ) 
25) φ → ∃xΨ ⇔ ∃x(φ → Ψ) 
26) ∃xΨ → φ ⇔ ∀x(Ψ → φ) 
27) ∀xΨ → φ ⇔ ∃x(Ψ → φ) 



(1)  ¬∃x∀y(Py → Rxy)  (“Nobody masters every problem”)  

(2)  ∀x∃y(Py ∧ ¬Rxy)  (“Everybody fails to master some problem”)  

We show the equivalence of (1) and (2) as follows: 

¬∃x∀y(Py → Rxy) ⇔ ∀x¬∀y(Py → Rxy)  (¬∃xφ ⇔ ∀x¬φ ) 

∀x¬∀y(Py → Rxy) ⇔ ∀x∃y¬(Py → Rxy)  (¬∃xφ ⇔ ∀x¬φ ) 

∀x∃y¬(Py → Rxy) ⇔ ∀x∃y(Py ∧ ¬Rxy)  (¬(φ → ψ) ⇔ φ∧¬ψ ) 
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Equivalence Transformations:  
An Example 


